近期,公司研究生蔡泽亮、教师张刘挺、肖蓓蓓等的研究成果“Two-dimensional ZrConanosheetsas highly effective catalyst for hydrogen storage in MgH2”在《Journal of Alloysand Compounds》(IF=4.175)上发表。

作者: 发布时间:2019-09-09动态浏览次数:556

论文简介如下:

  Magnesium, a cheap and abundant metal, holds tremendous promise for on-board hydrogen storage over the past several decades. However, the practical application of MgH2 is still hampered by various challenges, including a high efficient catalyst. Zirconium and Zr-based alloys show great potential to serve as hydrogen transfer center due to their high activity in hydrogen dissociation and diffusion. In this paper, ZrConanosheetswere successfully prepared via a facile wet-chemical technic and then introduced to improve the hydrogen storage properties of MgH2. With the addition of 10wt%ZrConanosheets, the modified MgH2composite could desorb approximately 6.3 wt% H2 within 5 min at 300 °C and absorb 4.4 wt% H2 under 3 Mpa hydrogen pressure in 10 min even at 120 °C. The de/hydrogenation activation energy were calculated to be 90.4 ± 1.6 kJ/mol and 57.6± 1.0kJ/mol forthe MgH2+10 wt% ZrCocomposite, which reasonably explain the remarkably improved de/hydrogenation performance. X-Ray Diffraction (XRD) and Transmission electron microscope (TEM) results revealed that hydrogen could be diffused between the composite more easily with the presence of well dispersed ZrCo, which acted as “hydrogen pump” for hydrogen boundaries/interface diffusion along the Mg/MgH2 interfaces.Theoretical calculationsrevealed that the Mg–H bonds were extracted and weakened when adsorbed on the surface ofZrCo.Furthermore, the MgH2+10 wt% ZrCocomposite showed superior cycling performance with the aid of graphene, indicative of potential application in the nearest future in the area of hydrogen storage.

全文下载:https://www.sciencedirect.com/science/article/pii/S0360319919322761